Protein dielectric environment modulates the electron-transfer pathway in photosynthetic reaction centers.
نویسندگان
چکیده
The replacement of tyrosine by aspartic acid at position M210 in the photosynthetic reaction center of Rhodobacter sphaeroides results in the generation of a fast charge recombination pathway that is not observed in the wild-type. Apparently, the initially formed charge-separated state (cation of the special pair, P, and anion of the A-side bacteriopheophytin, H(A)) can decay rapidly via recombination through the neighboring bacteriochlorophyll (B(A)) soon after formation. The charge-separated state then relaxes over tens of picoseconds and recombination slows to the hundreds-of-picoseconds or nanosecond timescale. This dielectric relaxation results in a time-dependent blue shift of B(A)(-) absorption, which can be monitored using transient absorbance measurements. Protein dynamics also appear to modulate the electron transfer between H(A) and the next electron carrier, Q(A) (a ubiquinone). The kinetics of this reaction are complex in the mutant, requiring two kinetic terms, and the spectra associated with the two terms are distinct; a red shift of the H(A) ground-state bleaching is observed between the shorter and longer H(A)-to-Q(A) electron-transfer phases. The kinetics appears to be pH-independent, suggesting a negligible contribution of static heterogeneity originating from protonation/deprotonation in the ground state. A dynamic model based on the energy levels of the two early charge-separated states, P(+)B(A)(-) and P(+)H(A)(-), has been developed in which the energetics of these states is modulated by fast protein dielectric relaxations and this in turn alters both the kinetic complexity of the reaction and the reaction pathway.
منابع مشابه
Calculation of electron transfer reorganization energies using the finite difference Poisson-Boltzmann model.
A description is given of a method to calculate the electron transfer reorganization energy (lambda) in proteins using the linear or nonlinear Poisson-Boltzmann (PB) equation. Finite difference solutions to the linear PB equation are then used to calculate lambda for intramolecular electron transfer reactions in the photosynthetic reaction center from Rhodopseudomonas viridis and the ruthenated...
متن کاملProton and electron transfer in the acceptor quinone complex of photosynthetic reaction centers from Rhodobacter sphaeroides.
For twenty years the photosynthetic reaction center (RC) has been the premier testing ground for theoretical understanding of electron transfer in aperiodic systems, with special, but not unique, reference to long distance biological electron transport. In addition to the known structure, many of the attributes that make RCs so well suited to studying electron transfer function equally well for...
متن کاملA pragmatic approach to structure based calculation of coupled proton and electron transfer in proteins.
The coupled motion of electrons and protons occurs in many proteins. Using appropriate tools for calculation, the three-dimensional protein structure can show how each protein modulates the observed electron and proton transfer reactions. Some of the assumptions and limitations involved in calculations that rely on continuum electrostatics to calculate the energy of charges in proteins are outl...
متن کاملDynamically controlled protein tunneling paths in photosynthetic reaction centers.
Marcus theory has explained how thermal nuclear motions modulate the energy gap between donor and acceptor sites in protein electron transfer reactions. Thermal motions, however, may also modulate electron tunneling between these reactions. Here we identify a new mechanism of nuclear dynamics amplification that plays a central role when interference among the dominant tunneling pathway tubes is...
متن کاملElectrochromic shift of chlorophyll absorption in photosystem I from Synechocystis sp. PCC 6803: a probe of optical and dielectric properties around the secondary electron acceptor.
Nanosecond absorption dynamics at approximately 685 nm after excitation of photosystem I (PS I) from Synechocystis sp. PCC 6803 is consistent with electrochromic shift of absorption bands of the Chl a pigments in the vicinity of the secondary electron acceptor A(1). Based on experimental optical data and structure-based simulations, the effective local dielectric constant has been estimated to ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biophysical journal
دوره 103 9 شماره
صفحات -
تاریخ انتشار 2012